
Intention Interpretation for Service Request Using User Models

365

Intention Interpretation for Service Request Using User Models

* Chiung-Hon Leon Lee, Alan Liu, Yen-Ru Cheng
* Department of Computer Science and Information Engineering

ChungChou Institute of Technology

Department of Electrical Engineering and Center for Telecommunication Research

National Chung Cheng University

Taiwan, R.O.C.

leonlee@dragon.ccut.edu.tw, aliu@ee.ccu.edu.tw, kencheng.69@gmail.com

Abstract

A method to extract user intention from the service

request string entered by the user is proposed and applied

in semantic Web service systems. Imprecise user intentions

are modeled with computable goal models. Three kinds of

background knowledge are used when extracting the user

intention: domain ontology, goal structure, and user

profiles. Domain ontology is constructed to represent the

concepts in the application domain, the goal structure

indicates the system capabilities, and the user profiles are

for the intelligent system to infer the user’s preference. The

input terms will be parsed into different word sense sets.

With the domain ontology, possible senses of the terms will

be identified. The goal structure is used for mapping the

user’s requests to system capabilities. The user models will

be used to aid the selection of a personalized candidate

goal model for representing the user intention. The system

can base on the selected goal model to generate and

perform a series of actions for achieving the goal model.

Keywords: user intention, semantic Web service, goal

model, domain ontology, user profiles.

1 Introduction

Web services are a good choice for loosely coupled

architectures and reusable software components. By the

technologies of SOAP, WSDL, and UDDI, Web services

can be published, located, and invoked via the Internet.

Although there are several techniques and standards which

have been proposed to facilitate the Web services access, to

a Web service system, it is too naïve to wish that one can

directly use the results returned from the service providers

to satisfy the user’s request [1]. The system might have to

interact with the user to elicit enough information for Web

services acquisition; discover, select, and compose services;

process information returned from the services; and

demonstrate the results to the user.

In [2, 3], we proposed an approach to model the user’s

intention with goal that makes the service requester

intention-aware. An intention-aware system has the

capabilities to receive the user’s request, interpret the

request, and map the request to a series of system actions

for satisfying the request. This paper continues our

previous works to propose an intention interpretation

approach by using user models for semantic Web service

systems. The problems explored in this paper are

challenges in the representation and the extraction of the

services request intention. The contribution of this paper is

that we draw attention to the similarity between the process

of selecting, composing, and executing Web services and

the intention-based Human-Computer Interaction (HCI)

systems [4]. We represent a step forward in building

intention-aware semantic Web service systems.

One of the most attractive characteristics of the Web

services is service composition. The atomic services can be

further assembled into value-added composite services for

solving more complex problems. There are several

proposals for creating service compositions in standardized

and systematic fashions, such as Web Services Flow

Language, XLANG, and BPEL4WS [1]. However, these

standards describe Web service content in terms of XML

syntax which lacks both a well defined semantics and

sufficient expressive power.

The Semantic Web services [5] solve problems on the

semantic level of Web services and address Web service

descriptions as a whole. The semantic markup languages

such as OWL-S and its previous release DAML-S [6] are

proposed to describe the capabilities and contents of the

Web services in a computer interpretable language and

improve the quality of service discovery, invocation,

composition, monitoring, and recovery.

Since the service composition language and semantic

markup language have been proposed, for facilitating the

services access, the agent technology is widely used by the

Web service researchers [6, 7, 8, 9]. An agent is a software

entity that has some properties like human beings such as

autonomy, reasoning, learning, and knowledge level

communication [10]. The agent represents the user to

discover, interact, and compose Web services to satisfy the

user’s requests.

Journal of Internet Technology Volume 7 (2006) No.4

366

Because the agent has to delegate the user to do

something for serving the user, how the agent understands

the user’s service request becomes an important capability.

If the system misunderstands the user’s request, the results

return to the user will be wrong. Once a service-oriented

system becomes intention-aware, the time of the

user-system interaction can be reduced and the system

usage will become more convenient.

In the research of HCI or Human-Robot Interaction

(HRI), there are several approaches proposed to help the

system identify the user’s intention such as visual

recognition of hand and body gesture, conversational

interaction, force-feedback tactile glove, or fusing the input

from multimodal [11-12]. These literatures focus on how to

interpret and fuse the information from the input devices

for getting the user’s intention. In this paper, we claim that

the system can interpret the user’s intention more

specifically and individually if the system has the

background knowledge about the application domain,

system’s capabilities, and system users.

In [13], the authors proposed a method to extract

keyword and concept linguistic features from the semantic

context for intention modeling and action intention

prediction. A Naïve Bayes classifier is used to find the

proper concept of corresponding keywords. The user’s

intention is classified into two levels: action intention and

semantic intention. Action intentions are the basic actions

performed on the computer such as mouse click and

keyboard typing. Semantic intentions concern with the

aims which the user wants the system to achieve such as

“To buy a book about Java programming for me,” “To

book a flight for me,” etc.

In this paper, we are interested in how to provide a

mechanism to let the intelligent system interpret user

semantic intention from entered keywords. This allows the

user to use a semantic Web service system like using

traditional search engines by entering keywords. Based on

the interpreted user intention, the agent can perform a

series of actions to achieve the user’s request.

The concept of proposed approach is shown in Figure

1. We assume that the entered string contains the user

intention. The intention is defined as an object or goal that

guides the system to perform one or more system functions

for achieving it. A set of goal modes are defined from the

system requirements point of view as the abstract

descriptions of the system capabilities. The goal structure

is composed of the goal models and plays the role which

bridges the gap between service requests and system

capabilities. For example, assume that a user entered a

query string “query book java how to program”, after

interpretation process, the system might map the entered

string to a Query_Book goal model and interpret the user

intention as “To query a book which the book title is Java

How to Program”. Based on the goal model, the requester

agent can generate a plan to satisfy the goal model. When

executing the plan, the agent will send a service request to

a service broker agent for getting a book query service or a

booklist about Java programming. Finally, the agent will

display the booklist to the user for satisfying the

Query_Book goal.

Because the Web services requester does not have a

priori knowledge about the service providers and Web

services, how to map the service request to related Web

services is an important challenge in Web services research.

In software requirements engineering [14], the

requirements are elicited from the user and the system will

be designed to provide a set of services to achieve the

elicited requirements. Because the services are defined by

the system designer and the user generally has no idea

about how the designer names and designs the system

functions, the service request terms might mismatch with

the system capabilities. In this paper, we propose a

goal-based intention extraction process for mapping the

service request to the system capabilities. The service

request terms will be mapped to a predefined goal model

and the system can base on the matched goal model to

generate a set of actions to satisfy the user intention

represented in that goal model.

The rest of this paper is organized as follows. The

background knowledge used for mapping the service

request terms to goal structure is introduced in Section 2.

In Section 3, the process of the goal driven user intention

extraction approach is proposed. An implementation of

proposed method is described in Section 4. Finally, the

conclusions are given in Section 5.

2 Background Knowledge for Intention

Interpretation

Figure 1 The concept of intention mapping

Intention Interpretation for Service Request Using User Models

367

Background knowledge is an essential part when

acquiring user intention from the keywords entered by the

user. We take three types of background knowledge into

consideration to support the intention extraction process.

First, a goal structure is used to link the possible user

intentions and the system capabilities. Next, the domain

ontology is used to identify the possible senses of input

keywords. To construct the domain ontology, a lexical

dictionary WordNet [15] is used as the basis of the

ontology. Finally, a user profile is kept for recording the

user information for selecting personalized goal models.

2.1 Goal Models

One of the most important issues in user intention

extraction is how to transfer the service requests based on

the user’s point view to the system capabilities based on

the designer’s point of view. We use the goal model

proposed in [2] to facilitate this transformation. The

user-entered service request string will be mapped to

related goal models, and the system based on the matched

goal models to generate a series of actions to achieve the

goals.

We assume that the system requirements are elicited,

analyzed, and represented by the use case approach [16,

17]. The user cases will be extended with goal models to

facilitate the construction of the goal structure. The

goal-driven use case (GDUC) approach [18] is adapted to

discover the goal models. The GDUC approach is divided

into three steps: identifying actors and use case, extending

the use case with goal, and analyzing goal relationships.

The procedure of identifying actors and use case is

similar to general use case approaches for finding the

system actors and use cases. The actors represent the

information provider, system function user, and system

cooperator, etc., such as a real user, hardware, or virtual

software programs. In this paper, we are interested in the

actual user rather than other actors, because the goal

models extended from the use cases are the basis of user

intention representation.

A use case is a sequence of actions performed by the

system that yields an observable result of value to a

particular actor. The use case extension step is to extend

each use case with a goal model. A goal model is

composed of three parts: contents to represent the query

variables, properties to describe attributes of the goal, and

constraint to indicate the system awareness of the

environment before and after the goal has been achieved.

The contents play an important role for mapping the

entered request string to related goal models. The verb in

the request string will be interpreted as an action which

should be performed to satisfy the goal. The adjectives and

adverbs play the role of the constraints to the execution of

the action. The nouns are assigned as the parameters of the

action.

To obtain goal models of the system is a gradual

process. Through the use case based requirement analysis,

the goal models can be found from coarse to delicate. For

instance, assume that a user requires a bookstore Web

service system to buy a book, the service requester has to

generate a bookstore service query request, receive the

information of bookstore store services from service broker,

select and invoke the bookstore service, receive book

information from the service provider, present the book

information to the customer, invoke a book order service,

and present the order result to the customer.

In some situations, the user might only want to query

a book, so some query book steps can be integrated into

one abstract step “query book” to represent another use

case which performs the query book activity. Sometimes,

the user might want to buy an inexpensive book. In other

words, the system needs to sort the queried booklist

according to the book price for the user to select the

inexpensive books more conveniently. This requirement

can be seen as nonfunctional requirement to extend the

“buy book” scenario.

Figure 2 shows the use case diagram of the bookstore

example. The actor “Customer” represents the user who

wants to use the system to query or buy books. Three use

cases are identified, “Buy a book”, “Query books”, and

“Get inexpensive books”. The relationship between “Buy a

book” and “Query books” is an “include” relationship. It

represents the fact that when a user wants to buy a book, he

might need to query the book and get detail information

about the book first. The relationship between “Buy a

book” and “Get inexpensive books” is an “extend”

relationship. It represents that if the user wants to buy an

inexpensive book, the system should sort the books by

price for the user to select an inexpensive one. BuyBook is

Figure 2 A bookstore use case diagram

Journal of Internet Technology Volume 7 (2006) No.4

368

a rigid actor-specific goal because this goal is initiated by

the user and has to be satisfied or otherwise fail.

QueryBook is a soft actor or system specific goal, because

the goal could be initiated by the user or system to support

the first goal and could be satisfied to a degree.

GetInexpensiveItem is a system specific goal because it

only initiated by the system to support the BuyBook goal.

2.2 Domain Ontology

A key component in user-entered data parsing and

interpretation is the domain ontology which is a

conceptualization of the application domain in a

machine-readable form [19]. The ontology comprises the

classes of entities, relations between entities and the

axioms which apply to the entities which exist in that

domain.

How to represent concepts and concept relationships

in a machine readable form is important issue when

constructing the domain ontology, especially, when we

prefer to process the content of information rather than just

to present information to users. The Web Ontology

Language (OWL) [20] is designed for this purpose. OWL

provides additional vocabulary along with a formal

semantics to facilitate greater machine interpretability of

Web content than that supported by XML, RDF, and RDF

Schema (RDF-S). Although OWL gives a good way to

represent the domain ontology, how to construct a domain

dependent ontology is still a big challenge.

We assume that the linguistic features in the input

string may indicate a user’s intention. Two types of

linguistic features proposed in [13] are considered:

keyword and concept. A keyword feature is a single word

extracted from the stop-word excluded input string. For

example, a sentence “Buy a book about Java

programming” is parsed to keyword features “Buy book

Java programming”.

Only using keywords to represent user’s intention is

too specific. For example, “buy” and “purchase” is of the

same meaning sometimes; however, they are different

keyword features. In order to solve this problem, we

extract relationships between keywords from the WordNet

to facilitate domain ontology construction. WordNet is a

lexical dictionary representing the underlying lexical

concept in various forms: synonyms (similar terms),

hypernyms (generalization terms), and hyponyms

(specification terms), etc. These relationships are suitable

for domain ontology construction. The most representative

relationship (i.e. hypernyms) is selected as the concept

feature. However, not all concept generalization in

WordNet is suitable for the linguistic feature. For example,

the hypernyms of the word “java” in the hierarchy could be

“java-island-land-object-entity”, and “object” and “entity”

may be too abstract for domain ontology construction.

2.3 User Profile

We divide the user’s profile into static records and

dynamic records. The static records include the user’s ID,

name, interest, birthday, career, etc. Such information can

be derived when the user first registers to the system. A set

of rules can be derived from the static records to filter the

candidate goal models. For example, if the goal selection

module receives two goal models “Query_Book” and

“Book_Flight” and the user is a student, then the system

will select “Query_Book” and remove the other goals

because the agent can infer that it is rare to have a student

who has time and money to go to Java Island.

The dynamic records save a table of periodic patterns

and pattern related count to support the goal selector

ranking related goal models. The periodic patterns are

derived from the successfully performed user goals in a

user usage period. Such user goals have been performed

successfully and the view field of the goal model is

user-specific. A method to mine the periodic patterns and

how to use the user profile to select a goal model is

described in the next section.

3 User Intention Interpretation

“Understanding” a service request refers to the

computer’s ability to transform the verbal form into

machine-readable semantics. User intention interpretation

involves the extraction of key concepts from the entered

string, as well as inferring the informational goal. There

are many research issues in natural language understanding

(NLU), and we follow the state-of-the-art NUL techniques

to restrict the application domain and entered string format

for limiting the scope of intention understanding [21].

There are two main tasks in the user intention

interpretation process: keywords abstraction and goal

model generation. The former is to parse and interpret the

entered keywords for finding possible senses of the

keywords. The latter is mapping the interpreted keywords

to the related goal models.

Sycara and her colleagues proposed an abstraction

algorithm for mapping the query message from the service

requester to an advertisement of service providers [22].

Our user intention extraction algorithm is based on

Sycara’s algorithm. The difference is that our work is to get

a goal model to represent the user intention but the

abstraction algorithm is to generate a service profile for

discovering a proper Web service. In our approach, the

requester agent can base on the goal model to make a plan

for intention satisfaction.

Intention Interpretation for Service Request Using User Models

369

Figure 3 shows the procedure of user intention

extraction process in three main steps: keywords

abstraction, goal generation, and goal selection. The

domain ontology, goal structure, and user profiles are used

to support the process. The selected goal model will be

used to represent the user intention. Based on the selected

goal model, the system can generate a series of actions to

satisfy the goal.

3.1 Keywords Abstraction

The keywords abstraction step receives the service

request string from the user and refers to domain ontology

for generating a set of word sense. The keywords

abstracting process has three steps.

1. Separating the input string into a set of verb triples

(Verb, Constraint, Parameters).

2. Generating possible senses of terms in Parameters.

3. Eliminating impossible senses of terms.

Step 1 extracts the verb from the input string, and

separates the other terms into nouns, adjectives, and

adverbs according to their part in the phrase. The template

of the verb triple is (Verb, Constraint, Parameters) where

Verb stores the query term whose part of speech is verb;

Constraint contains the query term whose part of speech is

adjective or adverb; Parameters holds the other query

terms. For a bookstore example, the service request string

“Buy book java how to program inexpensive” could be

parsed into several verb triples as shown in Table 1. In this

example, the terms ‘buy’, ‘book’ and ‘program’ could be

interpreted as a verb or a noun; ‘java’ is viewed as a noun;

‘how’ is an adverb, and the term ‘inexpensive’ is viewed as

an adjective. The verb ‘query’ will be generated

automatically if there is no verb interpreted in the input

string. Here, we focus on atomic tasks, so we limit that at

Figure 3 User Intention Extraction Process

Table 1 An example of verb triples

Verb Constraint Parameters

buy book java how to program

inexpensive

buy inexpensive book java how to program

program inexpensive buy book java how to

query buy book java how to

program inexpensive

query inexpensive book java program

most one term will be in the variables Verb and Constraint.

We assume that the terms of Parameters should be seen as

whole. The verb triples containing the verb ‘book’ will not

be considered as candidate because the parameters will be

broken into two parts: ‘buy’ and ‘java how to program

inexpensive.’ The adverb ‘how’ will not be treated as a

Constraint in the same reason.

Step 2 gives the word senses to the query terms of

Parameters by referring to the application domain

ontology.

In Step 3, the word senses of the terms in the

Parameters are ranked by measuring the semantic

similarity among terms. We assume that the word sense of

a term is influenced by the context. For example, the term

‘java’ has three senses including island, coffee, and

programming language. If the other terms in the

Parameters include ‘computer’ or ‘software’, we can guess

that the sense 'programming language' is more possible

than the others.

How to bind the terms in the entered string with

correct concept is one of most important research issues in

natural language understanding (NLU) [23]. In [24], the

authors discussed that the extent to which shortest path

lengths in is-a hierarchies can be used to measure

conceptual distance. We adapt this idea for binding the

terms in the Parameters to one of the concept nodes in the

ontology.

In the domain ontology, if a term is polysemous,

multiple paths might exist between two terms. In our

approach, the senses of a polysemous term will be ranked

by comparing the minimum length of concept distance.

The distance of two concepts in the ontology is defined as

follows.

Let C1 and C2 be two concepts represented by the

nodes Na and Nb in the domain ontology, respectively, with

an is-a semantic relationship. A measure of the conceptual

distance CD between C1 and C2 is given by

CD(C1, C2) = minimum number of edges separating

Na and Nb. (1)

A term in the query string can be mapped to several

Journal of Internet Technology Volume 7 (2006) No.4

370

concepts in the ontology; we define the term distance TD

between two terms as follows.

TD(T1, T2) = min (CD(Ci, Cj)), (2)

where Ci and Cj is any combination of the concepts

mapped by any two terms.

Assume that there are n terms in the Parameters, the

multiple terms distance MTD between term T1 and other

terns is defined as follows.

)),(min(

)...,(

,...,3,21

321

njj

n

TTTD

TTTTMTD

=

=∧∧
 (3)

We choose one term to compare with the other terms

in the Parameters iteratively for deriving the MTD, the

concept which mapped by MTD will be selected as the

concept of the chosen term. If the terms cannot be found in

any node of the ontology for mapping, the concept distance

will be set as the maximum concept distance in the

ontology.

3.2 Goal Generation

The goal generation step uses the annotated verb

triples and the predefined goal structure to generate the

candidate goal models. The Verb term in verb triple and

synonyms of the Verb term will be used as index to search

the goal structure and find the matched goal models. The

Constraint term in verb triple is treated in similar way.

Each verb triple corresponds to a goal model. The goal

model generating process follows the steps listed below:

1. Generating candidate goal models by Verb term

matching.

2. Pruning the redundant goal models by comparing

Parameters terms.

3. Filling parameters fields of the candidate goal

model.

4. Extending candidate goal models by matching the

term in Constraint.

First step generates candidate goal models by

matching the terms in the Verb field of the verb triple with

the action field in the goal model. For example, assume

that the application domain is the bookstore, if the term

‘buy’ or ‘purchase’ has been identified in the Verb field, the

generated candidate goal models will be “Buy_Book”,

“Buy_Software”, and “Buy_Toy”, etc. because the action

field of these goal models are the same.

Step 2 uses the relationship between the action and

parameters to prune the redundant goal models. For

example, assume that three verbs ‘buy’, ‘book’, and

‘program’ are identified in the entered string, goal models

generated could be “Buy_Book”, “Buy_Software”,

“Book_Flight”, and “Travel_Planning” etc. If one term in

parameters is identified as an ISBN of a book, all of the

generated goal models will be eliminated except

“Buy_Book”.

In the research of NLU, the rule-based approach is a

widely used technique in which a set of heuristic rules are

designed by domain experts for mapping the content words

in the parsed constituents into meaningful entries in the

semantic frame [25]. The advantage of rule-based approach

is easy implementation. However, due to extensive

handcrafting and heuristic design in the approach,

extending or shifting the old design to a new domain often

involves significant time and effort on the part of the

experts. The statistical natural language processing

approach [26] can be adopted as an alternative. The

shortage of statistical approach is that training the

statistical approach based component need a lot of

annotated corpora but hand-annotation of corpora may be

costly. For this reason, in our approach, we construct a set

of elimination rules for filtering redundant goal models.

The elimination rules can be generalized as follows.

“If the parameters extracted from the verb triple do

not belong to the attributes of the object in the candidate

goal model

Then eliminate the goal model”.

In step 3, since the goal models have been generated,

the Parameters of the verb triple will be used to fill the

parameters fields of the goal models and the identified

attributes from the Parameters will be attached to the

object of the parameters fields.

Finally, if there is any constraint-goal model related to

Constraint term, the pruned candidate goal models will be

attached with the constraint-goal model. For example, if

the Constraint term is “inexpensive”, a constraint-goal

model “Get_Inexpensive_Item” will be attached to the

candidate goal models.

3.3 Goal Selection

The goal selection step receives candidate goal

models and selects a reasonable goal model by refereeing

the user profile. The static records in the user profile will

be used to filter the generated goal models, the dynamic

records are used to rank the filtered goal models.

There are three steps in the goal selection phase.

1. Filtering impossible candidate goal models by

referring the static records.

2. Ranking the selected goal models by referring the

dynamic records.

3. Interacting with the user to determine a final

selected goal model.

How to construct the dynamic records for ranking the

candidate goal models is a research challenge. In this paper,

we use periodic patterns to rank the goal models. Mining

Intention Interpretation for Service Request Using User Models

371

the periodic patterns from a sequence of successfully

performed goals is a sequential pattern mining problem

[27]. The assumption of this approach is that in a system

usage period, a successfully performed goal has some

relationship with previously performed goals.

A pattern is a sequence S = s1, s2, ….sn, such that n is

the length of the pattern. Assume that a successfully

performed goal sequence is {(g1, g2, G1), (g1, g3, G2), (g4,

g5, G3), (g1, G1), (g1, g3, G2)} which G and g are used to

represent the user-specific goal and extended

system-specific goal. For example g1 and G1 might be

“Get_Inexpensive_Item” and “Buy_Book”. This goal

sequence will be transferred into a pattern {A, B, C, D, B}

if we use upper-case alphabet symbols to represent the

pairs of the user-specific goal with its extended

system-specific goals. Because the same user-specific goal

might be extended with different system-specific sub-goals,

this kind of goals is treated as different goals in the

periodic pattern. For example (g1, g2, G1) and (g1, G1) will

be represented in different symbols A and D.

Figure 4 shows the periodic patterns extracted from

the original pattern {A, B, C, D, B}. The first group of

periodic patterns is extracted beginning with the first

element of the original pattern and the second group is

extracted beginning with the second element of the original

pattern, for instances. The length of the periodic patterns is

from 2 to the length of the original pattern.

Assume that four original patterns are {A, B, C, D, B},

{ B, C, D, B}, {A, B, C, B}, and {A, B, D, E}, the table of

dynamic record derived from these patterns is shown in

Table 2. The system will use the weighted count sum (WCS)

of the decomposed patterns to rank the input goal models.

The WCS is described as follows.

∑ ∗= −
CPWCS

L)2()((4)

L and C are the length and count of the matched

periodic pattern. P is a parameter for the weight of

previous successfully performed goals and can be set by

the system designer. In this paper, we set P to 2/3. For

example, if the candidate goal models generated are “B”,

“C”, and “D” and the previous successfully performed

user-specific goal sequence are “AB,” the WCS of these

goals are calculated as follows.

Figure 4 The periodic patterns extracted from the performed goal series

Table 2 The periodic pattern table of dynamic record

Length = 5 Length = 4 Length = 3 Length = 2

ABCDB 1 ABCD 1 ABC 2 AB 3

 BCDB 2 BCD 2 BC 3

 ABCB 1 CDB 2 CD 2

 ABDE 1 BCB 1 DB 2

 ABD 1 CB 1

 BDE 1 BD 1

 DE 1

67.11*)
3

2
(1*)

3

2
(

33.42*)
3

2
(3*)

3

2
(

0

)23()22(

)23()22(

=+=

=+=

=

−−

−−

D

C

B

WCS

WCS

WCS

After the ranking process, the ranked goals will be

“C”, “D”, and “B”.

The last step of goal selection is to display the

candidate goal models. Because the goal model contains

semantic information, the designer can base on the

information to get better user-system interaction. If there

are more than one candidate goal models selected, the goal

model will be shown to the user and the user can modify

the content of the goal model and select a proper goal

model to represent user’s intention.

4. Implementation

We apply the proposed techniques in implementing an

intention-driven query tool (IDQT), the tool is designed for

the intelligent service requester agent. The requester agent

performs the tasks such as accepting the service request

string from the user, extracting the user’s intention from the

request string, generating and executing a plan to satisfy

the user’s intention, interacting with the service broker to

derive the answer, and processing and integrating the

results from the service broker, etc.

For evaluating the proposed approach, we develop a

query model for Web services which is inspired by

Ouzzain’s research [28]. The query model has three levels:

the query level, the goal level, and the service level. In the

query level, the system provides a query interface to the

user for entering query string like using the search engine.

The user’s input query string is not a complete string. It is

composed of different query variables and the position of

the query variable is not limited and fixed. Three

application domains are considered in our model:

bookstore, vehicles scheduling, and flight booking. Three

vehicles are considered in the domain: taxi, bus, and train.

In our approach, we assume that the user has some

background knowledge about the application domain and

already knows which kind of services that the system can

Journal of Internet Technology Volume 7 (2006) No.4

372

perform. This assumption is a general assumption for many

state-of-the-art natural language understanding approaches

to avoid the user to overshoot or undershoot the

capabilities of query interface [29]. The user interface of

the intention extractor is shown in Figure 5.

In the goal level, the intention extractor receives the

user’s input string and performs the intention extraction

process which proposed in Section 3. There are 21 goal

models constructed in the application: 13 are actor-specific

and 8 are system-specific. The intention extraction process

uses the goal model to represent user’s intention, and

translates the goal model into a query document. Figure 6

shows a goal selection dialog for the user to select a goal

model to represent the user intention.

In the service level, we suppose that a Web service

broker agent like the broker mentioned in Sycara’s research

[22] can receive query documents which generated by the

service requester and help us discover the related Web

service and return the results. If the known Web service is

unable to satisfy the user’s request, the system will request

the broker to discover and provide more Web services.

Figure 7 shows a query book results which returned by

Amazon Web Services (AWS) (http://www.amazon.com)

in the bookstore application domain.

Figure 5 User interface of intention extractor

Figure 6 Goal selection dialog for goal selection

Figure 7 A result of query book goal

We evaluate the ability of IDQT by entering sentences

in original requirement specification. Our experiment

results show that the IDQT can correctly translate the user

service request into related goal model if the request

similar to the original string stored in the goal model.

5. Conclusion

We proposed a method to represent the imprecise user

intention with goals, and an intention extraction process is

also introduced. The background knowledge, domain

ontology, goal structures, and user profiles are used to

facilitate the intention extraction process.

By the proposed approach, the system can transfer the

entered string into goal models. Based on the goal model,

the system can perform a series of actions to achieve the

goal. Once the goal has been achieved, the user intention is

satisfied.

Acknowledgment

This research was supported in part by the

Department of Industrial Technology, Ministry of

Economic Affairs (Taiwan) under Grant

95-EC-17-A-02-S1-029 and by the National Science

Council under grant NSC94-2213-E-194-010 and

NSC95-2752-E-008-002-PAE.

References

[1] H. Wang, J.Z. Huang, Y. Qu and J. Xie, “Web

services: problem and future directions,” ELSEVIER J.

Web Semantics, vol. 1, no. 3, April 2004, pp. 309-320.

[2] C.H.L Lee and A. Liu “Model the query intention

with goals,” Proc. of the USW2005, Mar. 2005, pp.

535-540.

[3] C.H.L Lee and A. Liu “Toware intention-aware

semantic Web services,” Proc. of the IEEE SCC2005,

July. 2005, pp. 69-76.

[4] C. Breazeal, “Social Interactions in HRI: The Robot

View,” IEEE Trans. Systems, Man, and Cybernetics,

May 2004, pp. 181–186.

[5] M. Paolucci and K. Sycara, “Autonomous Semantic

Web Services,” Internet Computing, IEEE , vol. 7, no.

5, Sept.-Oct. 2003, pp. 34-41.

[6] K. Sycara et al., “Automated discovery, interaction

and composition of Semantic Web services,”

ELSEVIER J. Web Semantics, vol. 1, no. 1, 2003, pp.

27-46.

Intention Interpretation for Service Request Using User Models

373

[7] J.M. Vidal, P. Buhler, and C. Stahl, “Multiagent

systems with workflows,” Internet Computing, IEEE,

vol. 8, no. 1, 2004, pp. 76-82.

[8] N. Gibbins, S. Harris, and N. Shadbolt, “Agent-based

semantic Web services,” ELSEVIER J. Web Semantics,

vol. 1, no. 2, Feb. 2004, pp. 141-154.

[9] R. Sreenath and M. Singh, “Agent-based service

selection,” ELSEVIER J. Web Semantics, vol. 1, no. 3,

Apr. 2004, pp. 261-279.

[10] K. Sycara et al, ”Distributed Intelligent Agents,” IEEE

Expert, Dec. 1996, pp. 36-45.

[11] I. Marsic, A. Medl, and J. Flanagan, “Natural

communication with information systems,”

Proceedings of the IEEE, vol. 88 , no. 8 , Aug. 2000,

pp. 1354-1366.

[12] S. Iba, C.J.J. Paredis, and P.K. Khosla, “Intention

aware interactive multi-modal robot programming,”

Proc. of the IEEE RSJ Conf. 2003, pp. 3479-3484.

[13] Z. Chen, et al., “User intention modeling in web

application using data mining”, World Wide Web:

Internet and Web Information Systems, vol. 5, 2002,

pp. 181-191.

[14] P. Loucopoulos and V. Karakostas, System

requirements engineering, McGraw-Hill, London,

1995.

[15] C. Fellbaum, WordNet: An electronic Lexical

Database, MIT Press, Boston, 1998.

[16] I. Jacobson, Object-Oriented Software Engineering,

Addison Wesley Longman, Reading, Mass., 1992.

[17] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified

Modeling Language Reference Manual, Addison

Wesley Longman, Inc. 1999.

[18] J. Lee and N.L. Xue, “Analyzing user requirements by

use cases: a goal-driven approach”, IEEE Software,

vol. 16, 1999, pp. 92-101.

[19] B. Chandrasekaran, J.R. Josephson, and V.R.

Benjamins, ”What are ontologies, and why do we

need them,” IEEE Intelligent Systems and Their

Applications, vol. 14, no. 1, 1999, pp. 20-26.

[20] D.L. McGuinness and F.V. Harmelen, OWL Web

Ontology Language Overview, Technical Report,

W3C, 2004.

[21] H.M. Meng and K.C. Siu, “Semiautomatic acquisition

of semantic structures for understanding

domain-specific natural language queries,” IEEE trans.

on Knowledge and Data Engineering, vol. 14, no. 1,

2002, pp. 172-181.

[22] K. Sycara, M. Paolucco, J. Soudry, and N. Srinivasan,

“Dynamic discovery and coordination of agent-based

semantic Web services,” IEEE Internet Computing,

vol. 8, no. 3, 2004, pp. 66-73.

[23] J. Allen, Natural language understanding 2nd ed., The

Benjamin/Cummings Publishing Company, Inc.,

Redwood City, 1994.

[24] R. Rada, H. Mili, E. Bichnell, and M.

Blettner, ”Development and application of a metric on

semantic nets,” IEEE Trans. Systems, Man, and

Cybernetics, vol. 9, no. 1, 1989, pp. 17-30.

[25] H.M. Meng and K.C. Siu, “Semiautomatic acquisition

of semantic structures for understanding domain-

specific natural language queries,” IEEE Trans.

Knowledge and Data Engineering, vol. 14, no. 1,

2002, pp. 172-181.

[26] C.D. Manning and H. Schutze, Foundations of

statistical natural language processing, The MIT

Press, Cambridge, 1999.

[27] W.G. Aref, G. Elfeky, and A.K. Elmagarmid,

“Incremental, online, and merge mining of partial

periodic patterns in time-series database,” IEEE Trans.

Knowledge and Data Engineering, vol. 16, no. 3,

2004, pp. 332-342.

[28] M. Ouzzani and A. Bouguettaya, “Efficient access to

Web services,” IEEE Internet Computing, vol. 8, no. 2,

2004, pp. 34-44.

[29] C.W. Thompson, P. Pazandak, and H.R. Tennant,

“Talk to your semantic Web,” IEEE Internet

Computing, vol. 9, no. 6, 2005, pp. 75-78.

Journal of Internet Technology Volume 7 (2006) No.4

374

Biographies

Chiung-Hon Leon Lee received the

Ph.D. degree in Electronic Engineering

from the National Chung Cheng

University in Taiwan in 2006. He is an

assistant professor at Department of

Computer Science and Information

Engineering, ChungChou Institute of

Technology, Taiwan. His research interests are in

agent-based software engineering, Web services,

knowledge representation, and fuzzy time series.

Alan Liu received the Ph.D. degree in

Electrical Engineering and Computer

Science from the University of Illinois

at Chicago in 1994. He is an associate

professor at Department of Electrical

Engineering, National Chung Cheng

University in Taiwan. His research

interests in artificial intelligence and

software engineering include knowledge acquisition,

requirements analysis, intelligent agents, and applications

in embedded systems and robotic systems. He is also a

member of IEEE, ACM, and TAAI.

Yen-Ru Cheng received the BS degree

in Electrical Engineering from the

Tatung Institute of Technology in 1994

and the MS degree in Electrical

Engineering from the National Chung

Cheng University in Taiwan in 1996.

He is a Ph.D. student in the Electrical

Engineering Department at National

Chung Cheng University. His research interests are

artificial intelligence, software engineering, intelligent

agents, requirements engineering, and embedded software

engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

